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Almtract--Taylor dispersion is studied on a tree and on a Sierpinski gasket. On a tree, the exact 
expression of the probability is obtained, from which the m-adic global moments are derived; various 
temporal behaviours are then exhibited, as they depend upon a geometrical parameter. On a 
Sierpinski gasket, numerical calculations are performed; the flow "field" is first discussed; Taylor 
dispersion is analysed with the help of the two first moments; the influence of the finite character of 
the network is clearly pointed out; the main conclusion is that Taylor dispersion is almost completely 
independent upon the flow field even for a low number of generations. 

I. I N T R O D U C T I O N  

Dispersion in cylindrical capillaries was first analysed by Taylor 0953); the moment- 
analysis technique was introduced by Aris (1956), and later on extended by Horn (1971). 
Finally, a general theory of dispersion in a spatially periodic porous medium was developed 
by Brenner (1980). Further progress was made when the porous medium can be schematized 
by a spatially periodic capillary network; a general formalism was introduced by Adler & 
Brenner (1984). 

Meanwhile, fractal structures which are characterized by a dilational invariance (to be 
contrasted with the translational invariance of spatially periodic structures) were found to 
have a growing importance and many efforts have been recently devoted to them (see 
Mandelbrot 1982). In the previous issues of these series (Adler 1985a, 1985h), hereafter 
referred to as I and II, we studied the transport properties of a Leibniz packing, and the flow, 
in the stokes limit, in a general fractal capillary network. 

The purpose of this paper is to prepare the general study of Taylor dispersion in a fractal 
capillary network by working out two simple and classical examples; the moments of the 
probability density will display an original behaviour. In spatially periodic structures, the 
two first moments of the probability density were found to be a linear and a square function 
of time, respectively. In the two examples, these moments display other time behaviours. 
Hence, this qualitative difference is very important and is expected to largely modify the 
mathematical background of the Taylor dispersion theory as it was set up for structures with 
a translational symmetry. 

Some works can be cited in connection with fractal structures, since they are generally 
related to percolation networks; more precisely, the small-scale structure of the infinite 
cluster is self-similar. Sahimi et al. 0982) studied the dispersion in flow through porous 
media; they were mostly interested by the long-time behaviour when the dispersion is 
expected to present a diffusive character as a consequence of the translational symmetry at 
the large scale of the medium. A whole body of literature is concerned by random walks on 
fractals, with application of renormalization-group techniques (Gillies & Weiss 1970, 
Alexander et al. 1981, Alexander & Orbach 1982, and Sinai 1982) and by the so-called 
oriented conduction (see, for instance, Odagaki & Lax 1980). Of course, the present work is 
in many respects closely connected to them, but the essential difference is that the transfer 
rates are determined by the flow rates on the same network. Hence, in order to point out this 
specific feature, the present study is ranged in the class of Taylor dispersion phenomena. 
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Figure 1. An infinite tree of degree 3. 

This paper is organized as follows. The basic equations of Taylor dispersion are recalled 
in section 2. Then, the simplest example of a fractal structure, i.e. a tree, is analysed; the 
equations can be solved analytically and various time behaviours are obtained and 

discussed. 
In section 4, the second example which is the Sierpinski gasket is studied. First, the flow 

rates along the edges are calculated as an application of the method derived in II; the 
geometry of these flow rates present some interesting features which are briefly mentioned, 
since it controls the dispersion through the network. Then, the probability densities are 
numerically calculated, and Taylor dispersion is analysed with the help of the two first 
moments. The finite character of the network disturbs the long-time behaviour of the 
moments; these unwanted effects are discussed in order to point out some of the universal 
characters of the results. The major conclusion of this preliminary study is that Taylor 
dispersion is very rapidly almost completely independent upon the flow field when the size of 
the network is increased. 

Finally, a word of caution must be added here; some important questions are left 
unsolved and they may not have been put in the most convenient theoretical background. 
However, these two examples provided us with some useful hints for the development of a 
theory about Taylor dispersion in fractals, which would be at par with the development of 
Stokes flows in such networks. 

2. BASIC E Q U A T I O N S  

A detailed presentation of the basic equations of Taylor dispersion in spatially periodic 
capillary networks is given by Brenner & Adler (1985). This presentation is briefly summed 
up and transposed to a fractal capillary network. 

Let a fractal capillary network be represented by its graph 1" (see, for instance, the tree 
shown in figure 1). A fluid is assumed to flow through this network; generally, the vertices 
and the edges are numbered by the letters i and j, respectively. The flow rate along the edgej 
is denoted by ./(j). 

Imagine a tracer particle initially introduced at time t - 0 into the network at vertex i'. 
The probability of finding this particle within any capillary will be assumed to be negligible 
owing to the relatively small volume assumed for the capillaries compared with the vertices. 
More precisely, the solute holdup within the capillaries is assumed negligible compared with 
its holdup in the "mixing chambers" represented by the vertices. The probability density of 
finding this tracer particle at vertex i at time t is denoted by 

P(i, t l i'). [1] 

When the capillary walls are assumed to be impermeable to solute permeation, the 
probability density at each vertex i obeys to the first-order differential equation 

v(i) " dP(i'tli')dt ,(i,i '),(t) + jE~'(,) ~'~ J(j) P(i",tli') - ( j~( , )  J( j)) .  P(i. tli'), [2] 
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where 5 (i, f)  is a Kronecker delta and 5(t) is a Dirac's delta function, o(i) is the volume of 
vertex i. The edges j of the graph are oriented according to the flow rates along themselves; 
for a given vertex i, one can distinguish between the set fi÷(i) of edges ending at i, and the set 
f/-(i) of edges beginning at i; whenj belongs to fl÷(i), it can also be denoted by {i", i}. 

The equation has already been commented on by Adler & Brenner (1984). The left-hand 
side represents the time rate of accumulation of the amount v(i)P of solute contained in the 
vertex i. The first term on the right-hand side is a "source" term; the other terms describe the 
"convective" mass transfer occuring between connecting vertices. The essential assumption 
of perfectly mixing vertices is schematized by the fact that the pertinent flow rate is always 
weighted by the probability density of the vertex from which it comes. This assumed mixing 
property may be regarded as a consequence of one of several possible physical mechanisms. 
It may, for example, represent a strictly convective mixing process, such as occurs in a stirred 
tank. Alternatively, it may arise from intense molecular diffusion, considered to be dominant 
in the vertices----convection having previously been supposed dominant along the edges. 
Further commentary on these points was offered in Adler & Brenner (1984). 

The probability also satisfies the usual unit normalization condition 

P( i ,  t l i') u( i)  - l, t > 0, [3] 
i ~  v~ 

where V F  is the vertex set of F. 
The m-adic global moments of the probability density are defined by the expressions 

Mm (t I i') - ~ v(i) [R(i) - R ( i ' ) l ' P ( i ,  t l i'), [4] 
iE vr 

where, generically, for any vector V, V" is the m-adic V V . . .  V V (m times). R(i) is the 
position vector of the vertex i. 

Usually, only the two first moments are evaluated; the first one is related to the average 
translation of the tracer and the second one to its dispersion. In spatially periodic networks, 
in the asymptotic limit of long times, their time derivatives were found to be equivalent to 

d M t (t [ i') 
dt 

~, ~*, [5a] 

d 
d~ [M2(t I ~") - M,(t  I i') M,(t  I i')1 :- 2D*, [Sb] 

m 

where V* is equal to the interstitial velocity, and D* is the dispersivity dyadic. 
Brenner (1980) and Adler & Brenner (1984) gave general methods to calculate these 

two quantities in spatially periodic porous media. Apart from the particular time dependen- 
cy, we note that the time derivatives do not depend any more upon the initial vertex i', where 
the tracer was introduced. 

In the following, we shall show that completely different features appear in Taylor 
dispersion on fractal structures. 

3. TAYLOR DISPERSION ALONG A TREE 

Generally speaking, a tree is a graph without any cycles (Biggs 1974). For sake of 
simplicity, we shall consider the simplest example of an infinite tree in which each vertex is 
connected to three other vertices. At each vertex, the graph is subdivided into two parts, as it 
is shown in figure 1. 
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Thus, at step N, we shall have 2 z vertices; it is assumed that the abscissa xz  of these 2 z 
vertices is equal to N 

xN = N. [61 

The 2 ~¢ vertices at step N are assumed to have the same volume v(N),  which may be 
expressed as 

in dimensionless units, ot is an arbitrary constant which is assumed to be different than 1 

[7] 

c~ :/: 1. [8] 

This restriction will be removed and discussed at the end of this section. Note that, for 
a - 2, the volume of all the vertices is equal to 1; hence, at each step N, the volume offered to 
the fluid is multiplied by a factor 2. For a = 1, the volume offered at each step is constant 
and equal to 1. For a smaller than 1, this total volume decreases. 

The resistance to the flow is assumed to be the same for all the edges of the tree. Hence, 
starting at step N - 0 with a flow rate equal to J, the flow rate is equal to J /2  ~¢ after N 
subdivisions, as it is illustrated in figure 1. 

In order to keep simple notations and expressions, all the quantities introduced in this 
section are assumed to be dimensionless. Hence, in application of the general formula [2], 
the probability density P(N,  t) of any vertex of abscissa N > 0 satisfies the differential 
equation 

ot ~ d P ( N ,  t) 
P ( N  - 1, t) - P ( N ,  t), N 4 : 0  [9a] 

J dt 

1 d P ( O ,  t )  
P(0,  t), N =  0. [9b] 

2 "  dt 

Imagine that a tracer particle is initially introduced at time t - 0 into the capillary network 
at position R - 0 (of. figure 1); the corresponding initial conditions may be expressed as 

P(0,  t - 0 ) =  1, P ( N , t - O ) - O ,  N 4 : 0 .  [9c] 

The general solution of this system can be derived by elementary means; the first values 

are equal to 

e ( 0 ,  t) - e-",  

1 
P(1, t) - - -  • (e -g' - e-(J/*}'), 

l - o r  

1 . ( e _ j  t _ e_ ( j /a2 ) ,  ) _ 1 . ( e_Cj /a)  , _ e _ ( j / . 2 ) t ) ,  [ 1 0 ]  
P(2, t) - (I - a)(1 - off) (1 - 00 2 

N 

P ( N ,  t) - ~_, Crc.k e -(J/'')', 
k - O  
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where the constants Cs.k are determined by [9]. It may be shown that they are given by 

Co.0- 1, 
N - I  

CN. N -- -- ~ A(N - k, a) • C~,k, 
k-O 

C:~..k = A ( N  - k ,  a)  • Ck.k, k <_ N - 1 

where 

[ l l ]  

I 

A(l, - I I  l_ [12] 
i - I  l Of i" 

These expressions are valid for a ~ 1. 
Introduction of [10] into [4] yields the following expression for the m-moment of the 

probability density 

. o  

Let us now study the behaviour of these moments for the various ranges of variation of 
the geometric parameter, i.e. a > 1, a < 1 and a -- 1. 

For a > 1, the two first moments are illustrated in figure 2 for various values of a. Note, 
for instance, that the two first moments increase very slowly after some time. This is a 
consequence of the fact that the total space offered to the tracer particle is larger and larger, 
as it moves more and more slowly along the tree. 

In this range of a, the limiting behaviour of M , , ( t  I 0) at large times is a prior i  singular. 
Putting t - o~ in the series [13] would yield the absurd result Mm(t [ 0) - 0. The singular 
perturbation techniques employed by Cox & Brenner (1967) for another fluid-mechanics 
problem could be applied here; in essence, it consists of the splitting of the series into its inner 
and outer contributions. 

An alternative way to obtain the result consists in considering the equivalent problem for 
large values of N. Then [ga] is equivalent to the convection equation 

d 

1 8 P  1 OP 
J "  0~ + a--'; " 0"-; - 0. [14a] 

When a particle is released at time t - 0, at x - 0, it will be found at time t at the position 

x - Log (Jr Log a + 1) [ 14b] 
Log a 

Hence, a logarithmic behaviour is expected for large values of time when a is larger than 1, 
for the first moment M~(t  ] 0). 

Since no dispersion is associated with the convection equation [14a], the mean-square 
displacement M2(t  ] O) - [Ml ( t  [ 0)] 2 is expected to be constant. 

N~ 5. 

Figure 2. Taylor dispersion along a tree. Values of a are 2(a), 3(b), 4(c). The solid lines are for the 
first moment Ms (t I 0), the broken lines for M2 (t [ 0) - MI (t [ 0) M~ (t [ 0); note that the vertical 

scale is not the same for both quantities. The second quantity apparently reaches a constant value. 
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These two predictions are well verified by the numerical results illustrated in figure 2. 
When a is strictly smaller than 1, a completely different qualitative behaviour happens, 

since less and less space is available to the tracer particle, as it proceeds in the tree. In this 
case, it is deduced from [14b] that the particle reaches infinity in a finite time to, which may 
be expressed as 

1 
to J L o g a '  a < l .  [15a] 

After to, the amount of solute contained in the network at finite distances is smaller than 
1. In the long-time limit, the probability density decays exponentially as 

P(N,  t) ~- A (N ,  a) • e-" .  [15b] 

Introduction of [14] into [13] yields the following expression for the moments of the 
probability density 

M " ( t l 0 ) - - - ~ "  e -J', [15c] 

where ./~tm may be derived as 

./tt,. = ~-" N , . .  a ~ .  A (N, a). [I 5d] 
N-0 

For sake of completeness, these two coefficients are displayed in table 1 for a few values 
of the parameter a. The divergence of./ltt,, near 1 was not studied. 

Table 1. The coefficients ./llt~ and ./lit2 as a function of a [see 
equations (i 5)] 

0.05 0.058,332 0.064,486 
O. I 0 O~ 137,44 O. 168,24 
0.15 0.245,86 0.334,17 
0.20 0.396,84 0.601,16 
0.25 0.611,58 1.0373 
0.30 0.925,27 1.7669 
0.35 1.3990 3.0273 
0.40 2.4144 5.2984 
0.45 3.3795 9.6197 
0.50 5.5636 18.441 
0.55 9.7655 38.180 
0.60 18.805 88. ! 09 
0.65 41.478 237.61 
0.67 59.974 374.90 
0.69 90.141 617.71 
0.71 141.96 1072.1 

This exponential dependence of time is original in the Taylor dispersion context and it 
can be compared with [5]. The coefficients ./tt~ and .#t2 do not depend upon the initial vertex 
through which the tracer particle was introduced into the network in contrast with e -J'. 
Clearly, if the tracer particle had been introduced into any vertex at step N, M~(t I N)  and 
M2(t I N)  would behave as 

M e ( t i N )  ~, J~te . e -(J/2")'' [16] 

Let us investigate the last case a - I, which is very interesting since the exponential 
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dependence does not hold anymore. Equations [9] are replaced by 

d 
dt  P ( N ,  t) - P ( N -  1, t) - P ( N ,  t), N ~ 0 [17a] 

d 
d-~P(O' t) = - P(O, t), N - 0 [17b] 

together with the initial conditions [9c]. The solution of this system is simply 

t N 
P ( N ,  t) - --~. . e -t [18] 

since the forcing term has the same temporal behaviour as the solution of the homogeneous 
equation. Note that [ 18] is a Poisson distribution. 

Mt( t  [ 0) and M2(t [ 0) are then easily deduced as 

M,( t  I O) = t, [19a] 

M2(t  10) = t '  + t. [19b] 

The classical behaviour of Taylor dispersion in spatially periodic media is thus recovered 
(cf. [5]). It is, of course, a consequence of the fact that the total volume offered at each step is 
a constant. 

4. T A Y L O R  D I S P E R S I O N  ON A S I E R P 1 N S K I  G A S K E T  

This classical example of fractal is studied in this section. All edges are assumed to have 
the same resistance per unit length; the flow rates along the edges are calculated and their 
major features described and discussed. Then, Taylor dispersion is numerically studied; the 
influence of the hydrodynamic parameter k, which controls the flows, is analyzed with a 
particular attention. 

Flow rates along the edges 

The Sierpinski gasket was studied in II and is illustrated in figure 3. The flow rates, 
which go out of the gasket F z at step N, are denoted by J~)~, j~)2, j~)3; they are arbitrarily 
assumed to be positive when the flow goes out of IN. They may be expressed as 

j~)l - __ I, 

j~)2 - I 
1 + x '  [2o1 

I + X '  

where ~, is a dimensionless parameter ranging from 0 to 1. In this section again, the flow 
rates, the time . . . .  are assumed to be dimensionless for sake of simplicity. 

Note in [20] that the sum of the three flow rates is equal to zero: the interval [0, 1] for ~, 
is sufficient, since for h larger than 1 the role of the two vertices v~ )2 and v~ )3 could be 
interchanged. 

When the flow rates at the external vertices are known, it is a simple matter to calculate 
the flow rates on the various edges, by a repeated application of the matrix I-I~v, introduced in 
II. The Sierpinski gasket of order N can be decomposed into three gaskets of order N - 1. 
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Figure 3. The construction process of the Sierpinski gasket. The basic graph Fo is given in (a); 3 basic 
graphs are used to obtain the next generation as shown in (b). 

The flow rates at the external vertices of the three gaskets of order N - 1 can be related to 
the three external vertices of the overall gasket in the following way [with the notations of 
figure 3(b)]: 

Jj 

J3 

J, 
1 

J, =~× 

J~ 
g~ 

J~ 

/J9" 

3 0 

- 1  1 

- 2  - 1  

1 - 1  

0 +3 

- 1  - 2  

2 1 

1 2 

- 3  - 3  

0 

0 

0 

/ 0 • J ~ .  

o J~ 

0 

0 

Oj 

[21] 

Since the flow rate at the third external vertex is always equal to the opposite of the sum 
of the two other flow rates, it is sufficient to consider three 2 x 2 matrices 

c,,/,(,,) 
= A I • ~ A 2 • - -  A 3 • 

J~ \Jd g~ Vd J~ \Jd 
[221 

where A ,  A, and ,0, 3 are readily deduced from [21]. 
These applications are easily implemented on a computer and an example is given in 

figure 4. The reader may check that the sum of the flow rates is equal to zero at each vertex 
and that the total pressure drop along every cycle of the graph vanishes identically. 

It is interesting to consider the "streamlines" in the network, and they are represented for 
a few values of the parameter ~ in figure 5. Let us focus our attention on the directions of the 
flow rates; these directions are important since they control the transfer by Taylor dispersion, 

Figure 4. A numerical example of the flow rates along the edges of a Sierpinski gasket. 
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N=I 

N:2 

~,_-0 X=0.2 X=0.5 

Z A 
A A A 

N=3 A 
Figure 5. Directions of the flow rates along the edges of a Sierpinski gasket for various external flow 

conditions and various values of N. 

as it follows f rom [2]. The  signs are  identical for the networks ( N  - I ,  X - 0) and ( N  - 1, 

- 0.5); then a difference appears  a t  N - 2 for the same values of  X. Again,  the signs are 
identical for the networks ( N  - 2, X - 0) and ( N  - 2, X - 0.2); a sign difference appears  at  
N - 3 .  

Hence,  the first rule seems clear. The  signs on two finite networks can be made  identical, 
by choosing two values of  X which are  close enough. However,  no mat te r  how the two values 

of  X are close, one can find N large enough so tha t  there exists at  least one sign on the two 
networks which is different. Moreover,  the differences between the signs is pushed forward,  

so to speak. 
The  other important  feature  is the fact  that  the numerical  values of  the flow rates in the 

inner s t ructures  tend towards a common limit when N increases; this limit does not depend 

upon X. This  is illustrated for the three first tr iangles in a network in table 2. 

Table 2. Flow rates on the nine edges of the first three triangles as a function of the order N of the total gasket. 
The edge numbers are given in figure 6 together with their orientations 

Edge N- 2 N- 3 N- 4 N- 5 

I 0.5556 0.5185 0.5062 0.5021 
2 -0. IIII -0.0371 -0.0123 -0.0041 
3 -0.4444 -0.4815 -0.4938 -0.4979 
4 0.5556 0.4074 0.3580 0.3416 
5 -0.4444 -0.2593 -0.1975 -0.1770 
6 -0. IIII -0.1482 -0.1605 -0.1646 
7 0.2222 0.1852 0.1728 0.1687 
8 -0.1111 0.07407 0.1358 0.1564 
9 -0.1111 -0.2593 -0.3086 -0.3251 

The  values of  the flow rates a t  the external  vertices of  these three triangles are obtained 
by a multiplication by Am • A7 may  be expressed as 

A~- an [23] 

where a,+~ - 3 a ,  - 1 and a~ - - 1. 
For n large, A~ becomes equivalent  to 

1 AT( I n large. 
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Hence, the flow rates do not depend anymore on J~, and thus they are independent of the flow 
parameter ~,. 

It may be said that there is a kind of isotropisation, since the anisotropy induced by ), is 
quickly forgotten in the inner structures. Such a phenomenon has already been encountered 
in I; an anisotropic Leibniz packing was shown to give the same results for the conduction 
process as an isotropic packing. 

Finally, in consequence of this isotropisation, it may be expected that Taylor dispersion 
does not depend too much upon the flow parameter ),. 

Taylor dispersion 
The present situation differs from the previous one in a tree. The differential system [2] 

cannot be solved analytically, since the network contains cycles. 
Hence, the system [2] was solved numerically for finite networks. The algebraic value of 

the flow rates along the edges of the network is first calculated; then, the set f~+(i) and fl-(i) 
are automatically determined for each vertex inside the network. The differential system [2] 
is calculated and is integrated with the aid of a subroutine which belongs to the IMSL 
Library. Various tests of accuracy and self-consistency were performed on the results. 

Of course, the larger is the network, the larger is the differential system to solve. It was 
experimentally found that most of the interesting features were displayed with 27 triangles 
corresponding to a gasket of order 4. This gasket is given in figure 6 with some notations such 
as the numbering of the vertices. This amounts to the simultaneous resolution of 42 
differential equations. 

4, 

8 

R 

9 ' . . . .  \15 

,. \ 
/ \ 

P4 / \ 
2 - 2 

I÷X I÷), 

Figure 6. The Sierpinski gasket of 27 triangles (N - 4), on which the numerical calculations were 
performed. Some relevant vertex numbers are given. The abscissae of the vertices is shown by the 

vertical scale on the left. Light broken lines are used to indicate the subgraphs r~, F2 and 1"3. 

The vertices are assumed to have the same volume 1, and they are regularly spaced. The 
abscissa of the vertex i along the R axis (cf. figure 6) is denoted by R(i); for instance, R(1), 
R(2), R(4) and R(9) are equal to 0, 1, 2 and 4, respectively. These simple hypotheses may, of 
course, be modified in future works. The tracer particle is always introduced at vertex 1 at 
time t - 0, according to [2]. For such a finite network, the particle is of course allowed to 
leave the network at vertices 23 and 42. Hence, the total amount of solute decreases with 
time in contradiction with equations [3]. In order to take this fact into account, the 
expressions [4] of the m-adic global moments are here modified as 

M~(t 10) 
M~, ( t [0 )  ~ M e ( t [ 0 ) '  m > 1. [24] 
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P(~,tlo) 

1 

{3 

0 10 20 

Figure 7. Evolution of the probability density as a function of time for three vertices. The number of 
the vertices are l(a),  5(b), I l(c); their location is given in figure 6. ' ~, is equal to 1. 

Besides these quantities, it was found useful to analyse moments of the probability 
density evaluated on subunits of the complete network. We define three additional m-adic 
global moments by 

[R(i)]" • P(i, t[ O) 
M~, (t I 0) - '~ vrj 

~_. P(i,r[O) 
iE vrj 

[25] 

wherej varies from 1 to 4. r l  consists of the first triangle, r 2 of the first three triangles, 1"3 of 
the first nine triangles and I"4 of the first twenty-seven triangles (i.e. of the whole network); 
this is illustrated in figure 6. Note that M~ (t [ 0) and M~, (t [ 0) are identical. 

In principle, the various moments of the probability distributions are m-order tensors (of. 
[4]). Here, we restricted ourselves to their values along the R axis. This is due to the fact that 
the gasket is limited in its lateral direction (say y) perpendicular to the R-axis; hence, one 
will see mostly the influence of this geometrical limitation in the results. Note also, in view of 
the geometrical symmetry, that the first lateral moment is equal to zero for a large number of 
triangles. 

Numerical results are now displayed in a series of figures and commented. In order to 
further check the numerics, the evolution of the probability density in a few arbitrary 
vertices is presented in figure 7. Two important features are obtained. First, the various 
maxima are shifted in time one with respect to the other one, which corresponds to the 
"passage" of the tracer particle; second, the maximum in time of the probability density goes 
to zero very rapidly, since more and more space is available to the tracer particle as it 
proceeds along the structure. 

The evolution in time of the total amount of solute inside the various graphs Pj is shown in 
figure 8 for a given value of the hydrodynamic parameter 7,. It will be shown later that this 
result is remarkably insensitive to ~,. The various amounts of matter MJ0 (t I 0) decrease with 
time as expected. There is no obvious time scaling relation between these various quantities. 

M. 1 d 

0 5 10 20 

Figure 8. Evolution of the amount of solute kPo (t I O) for the various subgraphs rj. ~, is equal to I. 
Values o f / a r e  1 (a), 2(b), 3(c), 4(d). 
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Stopping times t~ could be defined from these curves in the following way: t~o is the time at 
which an amount Po of matter stays in the subunit rj. An example deduced from figure 8 
could be for Po equal to 0.1 

t{~.1 = 6.00, I 1.0, 25.9, 70.8 forj = 1,2,3,4. 

Again there is no obvious scaling, but the relation between the various stopping times is 
highly nonlinear. The larger the network, the longer it retains the tracer particle. This is 
consistent with the fact that the maximum in the probability density in time is smoother as 
we proceed along the structure (it is illustrated in figure 7). 

The evolution in time of the first moments on the various graphs I'j is shown in figure 9 
for a given value of the hydrodynamic parameter ~,. It is only the first part of each curve 
which is interesting. Actually each curve is superposed for sufficiently short times with the 
universal curve corresponding to an infinite network. Note that most of the matter is still 
contained inside F, at time t = 10 (cf. figure 8); hence, it is expected that M', 4 (t[0),  
obtained for 1"4, is a good approximation of M, (t [ 0) in an infinite network for times lower 
than 10. 

M~|IO) 

5 10 1,,5 20 

Figure 9. Evolution of the position of the center of gravity M~ (t [ 0) for the various subgraphs I'j. ), 
is equal to !. Values o f j  are 1 (a), 2(b), 3(c), 4(d). 

The saturation of M'( (t [ 0) at large times is largely irrelevant; it is related to the fact 
that most of the solute is concentrated at the end of the submit for large times; hence, My' 
(t [ 0) is equal to the largest abscissa of the vertices which belong to I'j. 

Finally, it should be noticed that the maximum in the local probability density shown in 
figure 7 is roughly obtained when Mi (t [ 0) is equal to the abscissa of the vertex under 
consideration. 

Dispersion is represented in figure 10. Comments very similar to the ones made for M~ 
(t [ 0) can be given. Again, only the first part of the curves is interesting, since it is related to 
the dispersion in an infinite network. Using the same argument as before, the dispersion in an 
infinite network can certainly be well approximated for t ,~ 10 by the curve relative to I"4. 
The decreasing part of the curves is simply caused by the finite character of the network; 
when matter leaves the network, it contributes to the reduction of the dispersion. 

2. 

1 

lb :~o 3'o 4'0 

Figure 10. Evolution of the dispersion M~/(t I 0) - [Mi j (t ] 0)] 5 for the various subgraphs Fj. 
equal to 1. Values o f j  are l(a), 2(b), 3(c), 4(d). 

), is 
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M~I-M 

10 20 30 40 

Figure I I. Evolution of the difference Mo (t I O) I~-, - Mo (t I 0) I~. Values of k+ are 0(a), 0.1(b), 
0.2(c), 0.5(d). These differences are evaluated on P~. 

Let us finally investigate the influence of the hydrodynamic parameter ),. This is 
illustrated in figure 11 for the difference between probabilities, with a large vertical scale. 
Generally, this difference presents an oscillatory behaviour which is damped in time; 
however, it was not found necessary to display this long-time behaviour. As it was expected, 
the largest difference was numerically found to occur between the two extreme situations 
X - 0 and 1; note that the maximum does not exceed 13%, which is already pretty small in 
view of the differences between these two hydrodynamic situations. An other interesting 
feature is that the value of the maximum decreases very rapidly when k increases; the 
difference becomes relatively significant only when extreme situations are considered. 

This very important result can be explained with the aid of the preliminaries developed 
for the flow rates. It was shown that the flow rates in the subgraphs Fj were only slightly 
dependent upon the flow parameter ~, (cf. table 2); for 27 triangles the dependence of the 
inner structures was already very small. By its very nature, the Taylor dispersion tends to 
damp these differences, since it is a mixing process. 

Another test of the influence of ~, was made. The network F4 was imbedded in a network 
Fs; the flow rates were measured at the end vertices of Fs. The probability density was 
calculated as before inside F+. It was numerically shown that the maximum density 
difference was lower than 1.5% for the two extreme situations at the end vertices of Fs. 
Hence, the influence of the flow parameter becomes rapidly negligible. 

This feature could be further investigated by considering the reduction of triangles . . . .  
however, at the stage of the present study, we are mostly concerned by the extension of the 
results to a very large network. Note in this respect that the numerical results were all given 
for ), - 1, which is very close to the final situation in an infinite network. 

Finally, we may conclude on the large time behaviour of the various moments of the 
distributions. In view of what happened along a tree with o~ > I, a similar behaviour may be 
expected since the volume offered to the tracer particle is an increasing function of R; 
however, the Sierpinski gasket is characterized by the regular presence of bottlenecks, such 
as the vertices 9 and 15 (see figure 6) between F3 and I"4. The passage of the tracer particle 
through these bottlenecks may thus profoundly alter the large-time behaviour of the various 
moments. 

5. CONCLUDING REMARKS 

As it was said at the beginning, this paper should be considered as a mere introduction to 
the general study of Taylor dispersion in fractal capillary networks. 

These preliminary numerical results pointed out some problems to be solved in a general 
framework. For instance, the essential question of the behaviour at large times was only 
touched upon in section 3 where analytic expressions could be obtained. When such analytic 
expressions are not available, the question is to find recursive relations between successive 
generations of fractals inside which convection and Taylor dispersion occur. 
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Another interesting problem is the embedding of finite fractals in spatially periodic 
structures and the related calculations of the homogenous dispersion dyadic (see II for the 
derivation of the permeability). 

Finally, the extension to continuous situations has to be considered. For instance, the 
calculation of Taylor dispersion inside a Leibniz packing could provide a first example (see 
I). 
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